Science Bulletin 68 (2023) 1621-1624

journal homepage: www.elsevier.com/locate/scib

Contents lists available at ScienceDirect

Science Bulletin

Science
[Bulletin|

www.scibull.com

Short Communication

Crystallization kinetics of a fastest-cooling young mare basalt of

Chang’E-5

Zilong Wang *°, Wei Tian **, Wei-(RZ) Wang ”*, Ben Ma*?, Ping-Ping Liu?, Junling Pei ¢, Zhenyu Chen ¢,

Jiang Wu®, Chunjing Wei*

2School of Earth and Space Sciences, Peking University, Beijing 100871, China

b Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100871,

China

¢ State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
dKey Laboratory of Metallogeny and Mineral Assessment of Ministry of Natural Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing

100037, China

ARTICLE INFO

Article history:

Received 20 April 2023

Received in revised form 10 June 2023
Accepted 13 June 2023

Available online 4 July 2023

© 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

The quantitative effects of cooling kinetics on morphology and
mineralogy of crystalline phases in natural basalts have been well
recognized through microprobe analysis and crystallization exper-
iments. For decades, our understanding of the crystallization and
emplacement of lunar magmas has been greatly advanced through
laboratory analysis of lunar mare basalts and basaltic meteorites,
petrological experiments, and thermodynamic models. These
investigations have revealed that the cooling rates of mare basalts
can vary significantly, ranging from 0.001 °C/h (Apollo-15 basalt
15058) to ~1000 °C/h (Apollo-15 basalt 15597) (e.g., [1]). Recently,
China’s Chang’E-5 mission landed on a young mare basaltic unit in
the northern Oceanus Procellarum and returned mare basalts with
the youngest radiometric dating age reported thus far (~2.0 Ga,
e.g., [2]). Most of the basalts have similar bulk and mineral compo-
sitions but diverse textures, including aphanitic, porphyritic, sub-
ophitic, poikiliticc, and equigranular textures, implying
crystallization at different depths [3]. The crystallization kinetics
of lunar magmas significantly influence the dynamics of lava
emplacement and migration on the lunar surface, thereby affecting
the morphology of lunar lava flows [4]. However, few studies have
correlated the textural features with cooling conditions for these
basalts [5-7]. Consequently, this hinders the development of an
accurate emplacement model for the Chang’E-5 basalts.

In this study, we present a comprehensive analysis of the
petrology, mineralogy, and bulk chemistry of a basaltic clast (No.
CE5C0800YJYX005GP, hereinafter referred to as 005GP), which
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was allocated by the China National Space Administration. The
major element composition of 005GP is comparable to those of
other Chang’E-5 basalts, with a bulk Mg# of 27.8 and TiO, content
of 4.79 wt% (Table S1 and Fig. S1 online). The Na,0 + K,0 content of
005GP (0.94 wt%) falls within the range reported for Chang’E-5
pristine basalts (0.33 wt%-1.01 wt%, 20), but beyond the range
for Chang’E-5 impact glass (0-0.39 wt%, 2¢) 8], indicative of a vol-
canic origin. Moreover, the bulk MgO/Al,03 and Ca0/Al,05 ratios of
005GP are similar to those of pristine basalts from Chang’E-5
(Fig. S2 online). Consequently, the studied basalt and other
Chang’E-5 pristine basalts reported are likely derived from a single
basaltic lava flow, as suggested by Ref. [3].

The basaltic clast 005GP consists predominantly of clinopyrox-
ene (57%), plagioclase (25%), ilmenite (10%), and fayalite (2%) crys-
tallites, with small grains (<5 pm) of accessory phosphates, troilite,
K-feldspar, and hyalophane present as interstitial phases (Fig. 1a
and Figs. S3 and S4 online). Within the clinopyroxene of 005GP,
two distinct domains, namely Domain-1 and Domain-2, can be
observed. Domain-2 clinopyroxene appears brighter in the
backscattered electron (BSE) image and surrounds Domain-1
clinopyroxene, which is relatively darker (Fig. 1b). Domain-1
clinopyroxene exhibits a patchy shape and compositionally
enriched in TiO, (5 wt%-7 wt%), Al,03 (8 wt%-9 wt%), and CaO
(10 wt%-14 wt%) contents (Fig. 1c), resulting in elevated total
Tschermak components (19%-21%, XTs = CaTs + CaFeTs + CaTiTs +
CaCrTs = CaAlAlSiOg + CaFeAlSiOg + CaTiAl,Og + CaCrAlSiOg) com-
pared to those in other Chang’E-5 basalts (Fig. 1d). On the other
hand, Domain-2 clinopyroxene has remarkably lower Mg*
(33-37), TiO, (0.7 wt%-2.5 wt%), AlL,O3 (1 wt%-3 wt%),
Ca0 (10 wt%-12 wt%), and correspondingly lower XTs
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Fig. 1. Backscattered electron (BSE) image of 005GP, in combination with petrology and mineralogy of clinopyroxene in 005GP. (a) Local BSE image of 005GP. The red box
indicates the magnified and delineated clinopyroxene shown in (b). (b) A schematic drawing of clinopyroxene texture, illustrating the two compositional domains. (c) Mg*
(Mg/(Mg + Fe) x 100% in molar percent) versus Y Ts components of clinopyroxene analyzed in 005GP. (d) Si + Mg versus Al + Ti + Ca (in apfu) contents of clinopyroxene
analyzed in 005GP. The purple regions in (c) and (d) represent compositional kernel-density plots of clinopyroxene in other reported Chang’E-5 basalts (data from Refs.
[2,3,5]). The yellow bars indicate a scale of 10 um. Cpx: clinopyroxene, Pl: plagioclase, Ilm: ilmenite, Fa: fayalite.

(2.5 wt%-7.5 wt%) contents compared to Domain-1 (Fig. 1d). The
compositions of Domain-2 clinopyroxene are chemically similar
to those of clinopyroxene in other Chang’E-5 basalts (Fig. 1c, d).
The presence of these two distinct clinopyroxene domains is a
unique feature observed in Chang’E-5 basalts, suggesting different
crystallization kinetic conditions possibly associated with different
cooling rates between the two domains (see text below). The pla-
gioclase crystals exhibit extremely irregular shape, ranging from
anhedral to subhedral, with a locally aligned structure on a
submillimeter scale. Their compositions (Angg.g4Ab14.180174,
MgO = 0.05 wt%-0.25 wt%, FeO = 1 wt%-2 wt%) show slightly
higher Fe contents compared to other Chang’E-5 basalts (Fig. S5
online). The ilmenite texture varies from facets (typically <10 pm)
to laths (typically <100 pm in length) (Fig. 1a). Fayalite grains are
euhedral to subhedral with a relatively small size of ~10 pm, and
are often associated with ilmenite and/or plagioclase (Fig. 1a). Their
compositions are more enriched in Fe (Fa = ~80-82) than olivine
phenocrysts in other Chang’E-5 basalts (Fa = ~39-60, e.g., [5]).
The evolution of crystal morphology is controlled by magma
undercooling (—AT) and cooling rate (CR). As —AT increases,
clinopyroxene crystals become progressively enriched in tetrahe-
drally coordinated aluminum ("Al), leading to an increase in the
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amount of XTs components at the expense of Di and Hd compo-
nents [9]. Therefore, the occurrence of early-formed Al-, Ti- and
Ca-rich Domain-1 clinopyroxene (Fig. 1c, d) can be attributed to
melt supersaturation resulting from high —AT conditions during
the early stage of crystal growth. Undercooling time-series exper-
iments have suggested that the presence of Domain-1 clinopyrox-
ene, as observed in this study, may imply a large —AT range of
30-50 °C (e.g., [10]). Furthermore, the presence of plagioclase
in the clast supports the kinetic condition of a large —AT
value, as high —AT values facilitate the nucleation of plagio-
clase. In contrast, if the —AT is only several degrees Celsius,
plagioclase cannot form at high CRs of up to hundreds of
°C/h (e.g., [9]).

The crystal size distribution (CSD) patterns of ilmenite and pla-
gioclase in 005GP display a linear to sublinear trend, without a
decrease in population density at smaller grain sizes (Fig. 2a, b).
The linear pattern suggests continuous nucleation and growth of
ilmenite and plagioclase crystals without significant accumulation
and fractionation. Moreover, the CSD patterns of ilmenite and pla-
gioclase of 005GP show the steepest slopes (—262 and —106) and
highest initial population densities (18.3 and 17.2) among all the
ilmenite and plagioclase crystals reported for lunar basalts
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Fig. 2. CSD patterns of ilmenite and plagioclase grains in 005GP, compared with Luna, Apollo, and other Chang’E-5 samples. (a) and (b) show the population density versus
crystal length diagram of ilmenite and plagioclase in 005GP (this study) and other Chang’E-5 samples [11,14]. (c) and (d) compare the ilmenite and plagioclase CSD slopes and
intercepts of 005GP with previously studied Luna, Apollo, and Chang’E-5 samples (Refs. [11,14] and references therein). The “golden spike” in (c) and (d) indicates the position
of 10 °C/h, calibrated by crystallization experiments using Chang’E-5 basalt as the initial composition [12,13].

(Fig. 2¢, d), indicating that 005GP may have formed under a high
cooling rate compared with other lunar samples [11].

The cooling history of 005GP can be quantified by jointly esti-
mating the temperature intervals of crystallization, growth rates
and slopes of CSD patterns of ilmenite and plagioclase. Detailed
information on the methods of CR quantification can be referred
to Section S1.4 and Data S2 (online). Thermodynamic modeling
using MELTS program indicates that ilmenite in 005GP crystallized
between 1061 and 887 °C, whereas plagioclase crystallized
between 1153 and 887 °C (Fig. S6 online). Assuming a —AT range
of 30-50 °C, the temperature intervals of crystallization are 124-
144 °C for ilmenite and 216-236 °C for plagioclase. The growth
rates of ilmenite (1.30 x 107°-1.79 x 10~® mm)/s) and plagioclase
(1.74 x 107°-2.10 x 10~® mm)/s) were determined through crystal-
lization experiments using initial compositions of Chang’E-5 basalt
at lunar pressure and oxygen fugacity conditions [12,13]. By incor-
porating the growth rates into the slopes of CSD patterns, the CR of
005GP is estimated to fall within the range of 152-243 °C/h based
on the ilmenite CSD pattern, or 143-189 °C/h based on the plagio-
clase CSD pattern. The estimated CR overlap in the range of 152-
189 °C/h, which is comparable to the highest one reported so far
(Apollo-15 sample 15597, CR = 102 to 10* °C/h [1]). Slight varia-
tions between the estimated CR ranges of ilmenite and plagioclase
are likely due to the different cooling timespans of the two
minerals.

Previous studies of Chang’E-5 basalts have documented the
CRs of 12 samples using CSD patterns of ilmenite and plagioclase
[11,14], plagioclase lath width [6], and clinopyroxene Fe-Mg dif-
fusion [7]. Their CRs span a range from 0.00055 to 86 °C/h.
Hence, our sample may represent the fastest cooling one col-
lected at the Chang’E-5 landing site. Using the mathematical
treatment for heat loss from a thermal boundary (see Section S1.6
online for details), the calculated burial depth for 005GP falls
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within the range of 5.7-6.3 cm. The shallow burial depth and
lack of evidence for crystal accumulation suggest that 005GP
probably formed at the uppermost chilled margin of Chang’E-5
lava flow. The CRs of most Chang’E-5 samples fall within the
range of 1 to 50 °C/h [11,14], corresponding to burial depths
ranging from 11 to 78 cm. The scarcity of samples with faster
CRs and shallower burial depths is likely due to space weathering
and multiple superimposed impact events, which have signifi-
cantly changed the surficial pristine volcanic lava flows into rego-
liths and impact glasses (e.g., [8]). Therefore, studying the
morphology and mineralogy of fast-cooling samples like 005GP
at lunar landing sites is crucial, as they can serve as benchmarks
for identifying young lunar lava flows based on remote-sensing
observations.

Moreover, the fastest-cooling basalts and other slower-cooling
ones establish systematic vertical variations of CRs in Chang’E-5
lava flow (Fig. S7 online). This continuum of sampling provides
an opportunity to compare the characteristics of Chang’E-5 lava
flows with those observed at Apollo landing sites. For example,
the significantly small volume of vesicles observed in shallow-
buried Chang’E-5 samples compared to Apollo samples suggests
that the magma of Chang’E-5 basalts underwent a less intense
degassing process with a small volume of volatile exsolution com-
pared to Apollo basalts. The low degree of degassing implies that
the heat loss rate of Chang’E-5 lava flow is likely slower than that
of Apollo lava flows, which may contribute to the development of
long sinuous rille systems adjacent to the Chang’E-5 landing site
[15]. Further investigations of textures and CRs for more
Chang’E-5 samples, combined with dynamic modeling of
Chang’E-5 lava flows, are essential. This will provide more insights
into the stratigraphy and petrogenesis of mare basalts and the
provenance of young mare lava flows, which will lead to a better
understanding of the volcanic history of the Moon.
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